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Abstract
Could translation be fully automated? We must first acknowledge the complexity, ambiguity, and diversity of natural lan-
guages. These aspects of natural languages, when combined with a particular dilemma known as the computational dilemma, 
appear to imply that the machine translator faces certain obstacles that a human translator has already managed to overcome. 
At the same time, science has not yet solved the problem of how human brains process natural languages and how human 
beings come to acquire natural language understanding. We will then distinguish between the task of translation and the 
responsibility of the translator. Thereafter, we will conduct a survey of the methods of machine translation (viz. RBMT, 
SMT, NMT, foundation models or large language models). These methods will then be critically evaluated both in general 
and relative to Bar-Hillel’s hypothesis about the impossibility of fully automatic, high-quality machine translation (Fahqmt). 
Some concluding remarks will be made about the scope, prospects, and limits of machine translation.
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1 � The task of translation

The task of translation (human or machine) typically 
involves mapping n linguistic units (e.g. words, phrases, 
sentences) from a source language S to a target language T, 
where n ∈ ℕ (or ℤ+ ). Furthermore, the task of translation 
will be successfully completed if and only if two conditions 
are satisfied: 

C1:	The meaning of the source string (or n linguistic units 
from S) is sufficiently well-conveyed in the target 
string1;

C2:	The target string is grammatically well-formed relative 
to the syntax of T.

One could easily be lulled into the misconception that 
the task of translation (human or machine) is relatively 

straightforward, especially when one considers the facil-
ity and natural ease with which children normally acquire a 
language. Nothing could be further from the truth: natural 
languages are among the most complex phenomena in the 
universe (Halliday 2003). The complexity of natural lan-
guage is a function of its stubborn irregularities that resist 
law-like generalizations, its richness of expressive poten-
tial, its maddening ambiguity, and an endless combination 
of its linguistic units (Scott 2018). This complexity is com-
pounded by the highly complex mapping that must be made 
across various levels of linguistic representation (viz. lexical 
syntactic, semantic, etc) whenever analysis is undertaken 
(see Fig. 1).

The complexity and ambiguity of natural languages were 
recognized on behalf of the natural language processing 
(NLP) branch of AI research quite early on.2 Furthermore, 
named entity recognition, word sense disambiguation, and 
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1  Semantic equivalence between the source and target strings, 
although an ideal, is not required relative to C1. Linguists often argue 
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2  See Council (1966) for the ALPAC (Automatic Language Process-
ing Advisory Committee) report on the prospects of computational 
linguistics and machine translation.
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sentiment analysis are examples of NLP tasks that typically 
deal with one and only one natural language. Machine trans-
lation, on the other hand, has to deal with a language pair (S 
and T): to the complexity of S, the complexity of T, and the 
complexity of the interface between S and T must be added 
the diversity of language pairs.

Consider the scenario in which there are n natural lan-
guages in the world in Fig. 2:

It has been estimated by Ethnologue, an annual refer-
ence publication that provides information about the liv-
ing languages of the world, that there are more than 7,000 
spoken languages in the world.3 Where n = 7, 000 , it may 
be inferred from Fig. 2 that there will be at least 24,496,500 
(or 7000 × 6999

2
 ) language pairs to be accounted for. This can 

only accentuate the challenge of successfully completing 
the task of translation across any one of nearly 25 million 
language pairs.

2 � The computational dilemma

From the complexity, richness, irregularity, ambiguity, 
and diversity of natural languages, it by no means follows 
that the task of translation will be an impossible one. On 
the other hand, these aspects of natural languages, when 

combined with a particular dilemma known as the computa-
tional dilemma, appear to imply that the machine translator 
faces certain obstacles that a human translator has already 
managed to overcome.

According to the computational dilemma, any translator 
(human or machine) assigned with the task of mapping n 
linguistic units from a source language S to a target language 
T must embrace one of the following two horns (Barreiro 
et al. 2011): 

H1:	Increase the knowledge base to deal with complexity, 
ambiguity, and diversity of S and T. The more compre-
hensive the knowledge base, however, the greater the 
degree of complexity, the more pressing the demand for 
resources, and the less palatable the environmental con-
sequences;

H2:	Reduce the knowledge base to avoid complexity. The 
smaller the knowledge base, however, the weaker the 
power of disambiguation.

Humans do not embrace H1 indefinitely: the upper limit in 
terms of the amount of information that can be accumu-
lated by the average adult human brain has been estimated 
at around 2.5 petabytes.4

Lesions to certain parts of the brain, named after Pierre 
Paul Broca (1861) and Carl Wernicke (1970) respectively, 
have resulted in a language disorder known as aphasia. As a 
result, these areas of the brain — known as Broca’s area in 
the frontal lobe and Wernicke’s area in the temporal lobe — 
have been associated respectively with language production 
and language comprehension (Fig. 4). Other parts of the 
brain that have been implicated in natural language process-
ing by humans include the perisylvian cortex, the basal gan-
glia, and the hippocampus (Duff and Brown-Schmidt 2012). 
Notwithstanding the progress that has been made, no uni-
versal theory has emerged among neuroscientists concerning 
how the human brain handles natural language (Scott 2018). 
While human translators offer an excellent example of how 

Fig. 1   Levels of linguistic 
representation
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Fig. 2   Number of unordered 
language pairs with n languages

Language (li) l1 l2 · · · ln−2 ln−1 ln
Language pairs l1-ln l2-ln ln−2-ln ln−1-ln 〈null〉

l1-ln−1 l2-ln−1 ln−2-ln−1
...

... · · ·
l1-l3 l2-l3
l1-l2

Number of pairs (n− 1) (n− 2) · · · 2 1 0
Total number of pairs (N) N = 1 + 2 + + (n 2) + (n 1) = n × (n 1)

2− − −· · ·

3  https://​www.​ethno​logue.​com/​guides/​how-​many-​langu​ages

4  See both Fig.  3 and https://​www.​scien​tific​ameri​can.​com/​artic​le/​
what-​is-​the-​memory-​capac​ity/

https://www.ethnologue.com/guides/how-many-languages
https://www.scientificamerican.com/article/what-is-the-memory-capacity/
https://www.scientificamerican.com/article/what-is-the-memory-capacity/
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this computational dilemma, though forbidding, is not insu-
perable, it is not clear how this achievement is effected.

3 � The responsibility of the translator

The task of translation, as described in §1, is however no 
ordinary task. It is distinct from the task of processing 
financial transactions and the task of processing the com-
ponents of a product and constructing that product stepwise 
along a production line. We do not have any issues with 
ATMs handling deposits, cash withdrawals, and transfers 
between accounts, nor do we generally have any issues with 
automated manufacturing techniques being employed in 
industries. The task of translation involves handling natural 
languages instead of financial transactions or components 
of a product.5 According to Charles Francis Hockett (1967; 
1959), a set of features distinguishes natural languages from 
other forms of animal communication.6 These features do 
not merely indicate that natural languages are complex: they 
imply in addition that the use of natural languages is both 
unique to the human species and a central aspect of human 
experience. Of these features that allow us to distinguish 
between natural languages and other forms of animal com-
munication, Hockett considers duality of pattern to be the 
most distinctive: all meaningful elements of a natural lan-
guage (viz. morphemes, words, sentences, etc) are composed 
from a limited inventory of meaningless elements (viz. pho-
nemes) (Gair 2006).

Given the unique and species-specific nature of natu-
ral languages, the task of translation (human or machine) 
must be approached with care. Unlike the tasks of process-
ing financial transactions and constructing products along 
a production line, the task of translation is a sensitive one. 
This implies that certain normative expectations arise with 
machine translation programs that do not typically arise with 
respect to ATMs and automated manufacturing systems. It is 
plausible to assert that we cannot trust the linguistic behav-
iour of translators (human or machine) unless they under-
stand the source and target languages that are involved in 
the task of translation. It is therefore the responsibility of 
translators to ensure both that they understand the source 
and target languages S and T and that the task of translation 
is successfully completed.

4 � The metaphysics & epistemology 
of understanding

I have distinguished between the task of translation (§1) and 
the responsibility of the translator (§3). Furthermore and 
given the unique and sensitive nature of the former, the lat-
ter will have as a necessary prerequisite an understanding 
of the source and target languages S and T involved in the 
task of translation. Whether translation can be automated 
depends chiefly on whether the two conditions C1–C2 of 
the task of translation (§1) can be satisfied by automated 
procedures. On the other hand, whether translation should 
be automated depends chiefly on whether the normative 
expectations that we have of human translators (viz. that 
they understand the source and target languages involved in 
the task of translation) can be satisfied by their fully auto-
mated alternatives. Whether and how machine translation 
programs could come to understand natural languages in 
the way that human beings do will determine whether trans-
lation should be automated, however successful these pro-
grams might be in the task of translation. The metaphysical 

Unit of data Description Approximation
1 bit (binary digit) 1 (true) or 0 (false)
1 byte 8 bits
1 kilobyte (KB) 1,024 bytes 1× 103 bytes
1 megabyte (MB) 1 ×1, 0242 bytes 1× 106 bytes
1 gigabyte (GB) 1 ×1, 0243 bytes 1× 109 bytes
1 terabyte (TB) 1 ×1, 0244 bytes 1× 1012 bytes
1 petabyte (PB) 1 ×1, 0245 bytes 1× 1015 bytes
1 exabyte (EB) 1 1, 0246 bytes 1 1018 bytes× ×

Fig. 3   Units of memory or data storage capacity

Fig. 4   Language areas of the brain (Scott 2018), adapted from 
National Institute of Health Publication 97-4257

5  By definition, a natural language refers to any language that has 
evolved naturally in human beings through use and repetition.
6  These design features include the following: displacement (the 
ability to refer to the past, the future, and what might not correspond 
to reality), productivity (openness, creativity, and the reflexivity of 
language), cultural transmission (the ability to learn languages from 
elders in the community), duality of patterning (the use of combina-
tions of a small number of discrete speech sounds to produce a large 
number of meaningful words and sentences).
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account of understanding that we endorse will influence 
what we take understanding ultimately to be, whether the 
translator (human or machine) demonstrates a requisite level 
of natural language understanding, and whether translation 
ought to be automated.

Although the metaphysics of understanding and the epis-
temology of understanding constitute two distinct branches 
of the philosophy of understanding, there is a natural ten-
dency to conflate them (Bommasani et al. 2021). Firmer 
foundations in the philosophy of understanding will allow 
us to sharpen what we mean by ‘understanding’ when we 
claim that a key part of the responsibility of the translator 
involves understanding the source and target languages S 
and T. What is it in virtue of which we can say of transla-
tors that they possess natural language understanding (i.e., 
the correct grasp of the meanings of the relevant linguis-
tic phenomena)? This is the central question in the meta-
physics of understanding. A response to this question will 
typically be supported by a theory of meaning (e.g. internal-
ist, referentialist, pragmatist). According to an internalist 
theory of meaning, the meanings of linguistic phenomena 
are equivalent to internal mental structures, arrived at in 
a compositional fashion from the meanings of words and 
their syntactic arrangement. This implies that a translator 
who understands the source and target languages S and T 
will map the n linguistic units from S to a meaning (e.g. a 
concept, a representation, or some other internal object of 
understanding), before generating a target string that has the 
same or a similar meaning.

According to a referential theory of meaning, on the 
other hand, words have external referents and declarative 
sentences are truth-apt (i.e., they could be true or false). 
Translators who understand the source and target languages 
S and T are capable of determining whether sentences in 
languages S and T are true relative to a context. A translator 
who understands the source and target languages S and T 
might map from a word or phrase in S to an external refer-
ent, before mapping from this external referent to its match-
ing word or phrase in T.7 According to a pragmatist theory 
of meaning, understanding requires neither the appropriate 
internal representations (e.g. mental structures as identified 
by internalists) nor the appropriate relationship with truth 
and reference (e.g. external referents as identified by ref-
erentialists) (Wittgenstein 1953). Rather, the pragmatist is 
concerned with whether agents are disposed to use natural 
languages in the appropriate manner. What matters here is 
the exhibition of the appropriate behavioral dispositions. 
One of the most famous pragmatist proposals in the context 
of AI and NLP research involves replacing the question of 

whether machines can think with the question of whether a 
machine can be constructed to pass a test for human intel-
ligence satisfactorily (Turing 1950).

Whereas the metaphysics of understanding is concerned 
with what it would mean for an agent to achieve the relevant 
sort of understanding, the epistemology of understanding 
is concerned with how we could come to determine that 
an agent has achieved the relevant sort of understanding. 
If the pragmatist theory of meaning is correct, then suc-
cess conditions for understanding may be identified with 
the manifestation of appropriate linguistic behaviours and 
behavioral dispositions. In the context of machine transla-
tion, a behavioral test for the natural language understanding 
possessed by human translators may involve a set of transla-
tion tasks. A machine translation program that is capable of 
satisfying conditions C1–C2 for each of these translation 
tasks will have manifested the appropriate linguistic behav-
iours and this will be a sufficient indicator that it possesses 
the requisite understanding. At the same time, whenever 
chatbots or conversational programs pass some version of 
the Turing test, their behavioral dispositions typically do 
not function as an apodictic indicator that they possess the 
requisite conversational intelligence. Instead of identifying 
the actual behaviour of these chatbots or conversational pro-
grams with the target or desired behaviour, AI researchers 
tend to regard the test-passing dispositions of these chatbots 
(however reliable they might be) as a symptom that the test 
itself is flawed. All things considered, the pragmatist theory 
of meaning does not appear to offer the correct metaphysical 
support with respect to what understanding ultimately is or 
what it might entail.

The reservations that arise when chatbots pass the Turing 
test may be extended to machine translation programs when 
they successfully complete various translation tasks. These 
tests and tasks are imperfect and defeasible means of assess-
ing whether understanding has been achieved. On the meta-
physical front, our gold standard probably remains either 
internalism, referentialism, some combination of both, or 
some alternative theory of meaning that is neither inter-
nalist, referentialist, nor pragmatist. The epistemological 
implication here is that we need, if we are to determine that 
machine translation programs have achieved the relevant sort 
of understanding, to find some reliable means of tracking 
their inner workings and dynamics and determining whether 
they are appropriate. To the extent that these means remain 
absent or incomplete, we cannot say with confidence that 
these machine translation programs, however successful 
they might be at the task of translation, are able to secure 
our trust in virtue of their possessing the requisite level of 
natural language understanding. This implies that we have 
good epistemological grounds to deny that translation should 
be fully automated.7  A useful introduction to internalist and referential theories of mean-

ing may be found in Elbourne (2011).
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5 � Machine translation methods

Machine translation researchers have not waited for neuro-
linguistics to solve the problem of how human translators 
cope with the computational dilemma §2 (nor should they). 
In addition, machine translation researchers have not waited 
for philosophers to deliver the correct metaphysical account 
of understanding (e.g. internalist, referentialist) and the epis-
temological means for determining whether the gold stand-
ard of understanding has been achieved. Instead, they have 
applied themselves conscientiously to the development of 
various methods of machine translation: rule-based machine 
translation (hereafter: RBMT), statistical machine transla-
tion (hereafter: SMT), and (more recently) neural machine 
translation (hereafter: NMT).

5.1 � RBMT

The Vauquois triangle is a hierarchical model that allows 
us to visualize various machine translations approaches 
(Vauquois 1968). Figure 5 depicts a Vauquois triangle rela-
tive to RBMT:

Direct translation (or dictionary-based translation) is an 
example of RBMT that relies on a direct word-for-word 
translation from S into T for all words in the n sentences 
to be mapped in the translation task. Here, the complexity 
that arises from mapping across different levels of linguistic 
representation (Fig. 1) is avoided as analysis and syntactic 
reorganization are kept to a minimum.8

Transfer-based machine translation is another example of 
RBMT: it relies on an analysis of the grammatical structure 
of each of the n sentences in S, the application of rules to 
transfer to a suitable structure for translation in T based on 

knowledge of the differences between S and T, and a genera-
tion of the target output in T relative to this suitable struc-
ture.9 Figure 6 offers an example of a parse tree structure for 
a sentence in English:

Where S and T are highly similar (e.g. Czech and Slovak), 
only syntactic transfer may be needed. Conversely, where 
S and T are quite different (e.g. Vietnamese and English), 
semantic transfer may be needed on top of syntactic trans-
fer. The interlingual approach is yet another example of 
RBMT: it analyses the n sentences in S, represents them as 
an interlingua, and then generates the target output in T on 
the basis of this interlingual representation. The interlingua 
is an intermediate and abstract representation of meaning 
that facilitates translation between S and T. Semantico-syn-
tactic Abstraction Language (hereafter: SAL), a representa-
tion employed by the Logos model, is a famous example of 
an interlingua: SAL is a second-order taxonomic language 
(similar to hypernyms) to which words in a natural language 
map.10 As a language, SAL boasts more than 1,000 words 
or elements, organized in a hierarchical taxonomy compris-
ing supersets, sets, and subsets, distributed over all parts of 
speech (Barreiro et al. 2011).

Direct translation restricts its analysis to the levels of 
morphology and lexemes: this allows it to avoid the com-
plexity associated with mapping across various levels of lin-
guistic representation. This embrace of H2 (or the second 
horn) of the computational dilemma (§2), however, has its 
costs: direct translation is less able to resolve ambiguity in 
meaning and cope with the complexity and diversity of S 
and T. This entails that the quality of translation output in 
T will be limited. The other examples of RBMT embrace 
H1 instead of H2: they typically add to the store of rules in 
the knowledge base. While a greater number of rules across 
various levels of linguistic representation will enhance the 
power of disambiguation and increase the quality of transla-
tion, it also implies a larger and more unwieldy knowledge 
base. As developers of rule-based systems work exceptions 

Source text in S Target text in T

Interlingua

Direct translation

Syntactic transfer

Semantic transfer

Fig. 5   Vauquois triangle for RBMT

Fig. 6   Parse tree diagram for 
the sentence ‘This boy walks 
quickly’

S

NP

Det

This

N

boy

VP

V

walks Adv P

Adv

quickly

8  Direct translation may rely on morphological analysis (analyzing 
the structure and parts of words) or lemmatization (converting words 
to their lemmas or basic dictionary forms).
9  Tree-based parsing is a process in which a flat input sentence like 
‘This boy walks quickly’ can be converted into a hierarchical struc-
ture. An online resource for sentence-parsing is available: https://​
www.​link.​cs.​cmu.​edu/​link/​submit-​sente​nce-4.​html.

10  Just as ‘cat’ has for its hypernym ‘animal’ or ‘pet’, a word like 
‘table’ would have for its SAL representation the more abstract ‘sup-
porting surface’.

https://www.link.cs.cmu.edu/link/submit-sentence-4.html
https://www.link.cs.cmu.edu/link/submit-sentence-4.html
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into generalized rules, they will have to address exceptions 
to exceptions, exceptions to these exceptions to excep-
tions, etc. Furthermore, as the sequence of procedural logic 
governing these rule-based systems becomes increasingly 
complex, it may become difficult or even impossible for the 
developers to keep track of and manage the logic, the likeli-
hood of logical inconsistencies or contradictions arising will 
increase, and some logic that might be written to resolve 
an issue might undo the earlier resolution of another issue 
(Scott 2018).

5.2 � SMT

Given the complexity that arises from an increasing number 
of rules in rule-based systems (§5.1), might it be possible to 
avoid rules altogether and rely instead on the statistical min-
ing of raw language? SMT, an approach to machine transla-
tion based on a Bayesian approach to inference, believes that 
this can be done (Brown et al. 1988, 1990). Here is Bayes’ 
theorem (BT) (Bayes 1763)11

Each text is translated in accordance with a probability dis-
tribution P(T|S) that a string T in target language T is the 
translation of a string S of n sentences in source language S. 
In accordance with Bayes’ theorem:

P(T|S) is the probability that a translator will produce T when 
presented with S. Furthermore, P(S) remains constant for 
each string T that is under consideration and may therefore 
be regarded as independent of T. The following may be 
inferred:

(BT) P(X|Y) = P(Y|X) × P(X)

P(Y)

P(T|S) = P(S|T) × P(T)

P(S)

The translation model P(S|T) assigns the probability that 
S is a translation of T and ensures accuracy of translation. 
The language model P(T) assigns the probability of seeing 
the string T in the target language and ensures fluency of 
translation. Under this Bayesian-inspired SMT approach, the 
desideratum is the most likely translation T for the some S. 
The equation to find the most probable T may be represented 
as follows:

The SMT approach entails that the best translation of a string 
S in S is the translation T in T that is the most probable. Ide-
ally, T is the most accurate translation (i.e., the value for 
P(S|T) assigned by the translation model is the highest) and 
the most fluent translation in the target language (i.e., the 
value P(T) assigned by the language model is the highest).

Consider the German sentence ‘Das Haus ist klein’. This 
string S comprises four words s1, s2, s3, s4 appearing in a spe-
cific order. Suppose further that the following English trans-
lations of ‘Haus’ ( s2 ) may be found in the German-English 
bilingual corpus C with the following frequencies (Fig. 7):

Proceeding in a word-by-word fashion, the most prob-
able translation for ‘Haus’ ( s2 ) would be ‘house’ ( tj , where 
P(s2|tj) = 0.8 ). Next, considerations about how each target 
word tj is aligned with its associated source word si will 
ensue. Alignment may be formalized with an alignment 
function: each source word will be mapped at position i 
to a target word at position j with the alignment function 
a ∶ i ↦ j.

Relative to the alignment of S (in German) and T (in Eng-
lish) in Fig. 8, the alignment function that will yield the 
mapping a ∶ {1 ↦ 1, 2 ↦ 2, 3 ↦ 3, 4 ↦ 4} . This is a rela-
tively straightforward alignment and it simply means that the 
German source words and their English target counterparts 
are in exactly the same order. All other things being equal 
and relative to an SMT approach, the anticipated translation 
T will be ‘The house is small’.

By contrast, suppose that our source string S (in English) 
is ‘You will find him in the garden’ and its target string T 
(in French) is ‘Tu peux le trouver dans le jardin’. Figure 9 
represents the associated diagram for alignment:

P(T|S) ∝ P(S|T) × P(T)

T̂ = argmax
T

(P(T) × P(S|T)) = argmax
T

P(T|S)

Fig. 7   English translations of 
‘Haus’ in the German-English 
bilingual corpus C (Koehn 
2009: p. 84)

English translation t
of ‘Haus’ (s2)

Count Estimation of translation probability or
P(s2|tj)

house 8,000 P(s2|tj) = 8000
10000 = 0.8 if tj = house

building 1,600 P(s2|tj) = 1600
10000 = 0.16 if tj = building

home 200 P(s2|tj) = 200
10000 = 0.02 if tj = home

household 150 P(s2|tj) = 150
10000 = 0.015 if tj = household

shell 50 P(s2 tj) = 50 = 0.8 if tj = shell10000|

11  The proof of BT runs as follows:
  1. P(X|Y) = P(X ∩ Y)

P(Y)

  2. P(Y|X) = P(X ∩ Y)

P(X)

  3. ∴P(X ∩ Y) = P(Y|X) × P(X) — from 2.
  4. ∴ LHS = P(X|Y) = P(Y|X) × P(X)

P(Y)
 = RHS — from 1 & 3 (QED).
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Rela t ive  to  the  a l ignment  of  input  Eng-
lish text and output French text in Fig.  9, the 
a l ignment  func t ion  may  be  represen ted  as 
a ∶ {1 ↦ 1, 2 ↦ 2, 3 ↦ 4, 4 ↦ 3, 5 ↦ 5, 6 ↦ 6, 7 ↦ 7}   . 
While SMT avoids the complexity that is associated with 
an ever-growing number of rules in rule-based systems, 
its embrace of H1 equally entails a greater degree of com-
plexity. The knowledge base in this instance would be the 
bilingual corpus C relative to which the values for statistical 
frequencies and conditional probabilities are computed. The 
larger the size of C, the more likely it will be that both S and 
T are captured in all their respective complexity, richness, 
irregularity, and diversity and the more representative will 
the statistical frequencies and conditional probabilities be. 
Simultaneously, a larger C will entail a greater demand for 
resources and a higher toll on the environment.

Corpus-based approaches like SMT are designed to prior-
itize accuracy in translation over lexical range and diversity 
of output. These approaches may result in a greater level-
ling out of texts, standardization and normalization, loss of 
lexical richness, and language impoverishment than human 
translation (Klebanov and Flor 2013; Vanmassenhove et al. 
2019b). Furthermore, the reliance on statistical dependen-
cies may lead to certain biases in the dataset being replicated 
(Vanmassenhove et al. 2019a). In other words, the reliance 
on C is a double-edged sword: while a sufficiently repre-
sentative C is a good guide to high-quality translation, an 
uncritical reliance on C may equally lower the quality of 
translation.

5.3 � NMT

NMT relies on artificial neural networks (ANNs) to learn the 
mapping from S (text in the source language S) to T (output 
in the target language T) (Bahdanau et al. 2014; Sutskever 
et al. 2014). State-of-the-art machine translation systems 
rely on NMT and they include Baidu (whose transition 
from SMT to NMT began in 2015), Google (whose transi-
tion from SMT to NMT began in 2016), Microsoft (whose 
transition from SMT to NMT began in 2016), and Systran 
(whose transition to NMT also began in 2016).

Each artificial neural network (ANN) is composed of a 
collection of connected nodes known as artificial neurons. 
Artificial neurons are loosely modelled after biological neu-
rons in the brain, as illustrated by Fig. 10:

Relative to Fig. 10a, each neuronal cell contains three 
main parts: dendrites, a cell body, and an axon.12 The 
neuronal cell is an electrically excitable cell that takes 
up, processes, and transmits information through electri-
cal and chemical signals. Electrical signals may first be 
received by the dendrites and brought to the cell body. 
These signals could be conducted away from the cell 
body by the axon. The electrical signals are eventually 
transmitted by the axon terminals of the presynaptic cell 
and received by the dendrite receptors of the postsynaptic 
cell. Relative to Fig. 10b, x1 and x2 denote inputs and w1 
and w2 denote their associated weights. v is equivalent 
to (x1 × w1) + (x2 × w2) . f(v) and T respectively denote the 
thresholding function and the threshold, such that f (v) = 1 
when v ≥ T  or f (v) = 0 when v < T  . Last but not least, y 
denotes the output such that y = f (v) (i.e., 0 or 1). Artificial 
neural networks (ANNs) may either have a single layer or 
multiple layers (preferred), as illustrated in Fig. 11:

Relative to the single-layered perceptron (Fig. 11a), 
x1, x2,⋯ , xn denote the n inputs, w1,w2,⋯ ,wn denote 
their corresponding weights, � denotes the thresholding 
function, � denotes the threshold (or negative bias), and y 
denotes the output such that
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Fig. 8   Alignment for ‘Das Haus ist klein’ (S) and its target text T in 
English, adapted from Koehn (2009: p. 84)

Fig. 9   Alignment for ‘You will 
find him in the garden’ (S) and 
its target text T in French
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12  There are 86.1 ± 8.1 billion neuronal cells in the average human 
brain (Azevedo et al. 2009).
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y = sign
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i=1
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Multi-layered networks (Fig. 11b) are more complex than 
elementary perceptrons (Fig. 11a), allowing for decision 
boundaries of greater complexity. Multi-layered ANNs may 
be feedforward or recurrent. Whereas traditional feedfor-
ward ANNs assume that the inputs x1, x2,⋯ , xn and output 
y are independent of each other, recurrent neural networks or 
RNNs assume conversely that information from prior inputs 
x1, x2,⋯ , xj−1 will influence the current input xj and output 
y. Figure 12 illustrates the structure of RNNs:

An RNN (Fig. 12) is an ANN that may be employed with 
sequential data or time series data. RNNs can be used to 
addressed temporal problems (e.g., natural language pro-
cessing, machine translation, speech recognition, etc). It 
should be noted that NMT typically relies on RNNs. An 
example from IBM should help to underscore the relevance 
of RNNs to machine translation.13 The idiom ‘feeling under 

Fig. 10   Biological versus artifi-
cial neurons
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x1

x2

v f(v) y

w1

w2

(b) McCulloch-Pitts model of an artificial
neuron with 2 inputs

x1

x2

...

...

xn

∑
σ

∑n
i=1(xi × wi)− θ

y

sign(
∑n

i=1(xi × wi)− θ)

w1

w2

wn

(a) A single-layered perceptron
ANN (Rosenblatt 1957)

x1

x2

x3

x4

y t

Hidden
layer

Input
layer

Output
layer

(b) A multi-layered ANN

Fig. 11   Single- versus multi-layered ANNs
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13  https://​www.​ibm.​com/​cloud/​learn/​recur​rent-​neural-​netwo​rks

https://www.ibm.com/cloud/learn/recurrent-neural-networks
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the weather’ is used to express how someone is feeling ill. 
The words in this idiom must be expressed in exactly that 
sequence if the idiom is to make any sense. It should there-
fore not surprise anyone that RNNs need to account for the 
position of each word in the idiom and use that information 
to predict the next word in the sequence.

In addition, the three key components in the NMT 
architecture are the encoder network (RNN), the attention 
module, and the decoder network (RNN). The RNN-based 
encoder transforms an input source text S into a list of vec-
tors. Thereafter, the attention module allows the decoder to 
focus on different regions of S during the decoding process. 
Finally, the RNN-based decoder produces the translation T 
one symbol at a time.14

The larger and more representative the bilingual corpus 
C on which NMT is trained, the larger the ANN (typically 
measured in terms of the number of training parameters or 
weights relative to which the input data S might be trans-
formed), the better the ability of NMT to generate distrib-
uted representations of words as vectors. Like most forms 
of RBMT (§5.1) and SMT (§5.2), NMT embraces H1 of 
the computational dilemma and embodies a ‘more is bet-
ter’ ethos, both in terms of the size of the training dataset 
and the size of the ANN. However, the same objections that 
beset corpus-based approaches like SMT will equally apply 
to NMT.

In addition, the higher the number of training param-
eters or weights, the greater the complexity of the entire 
ANN, the more pressing the demand for resources, and the 
less palatable the environmental consequences. After they 
have been trained on a dataset, vectors (or large matrices of 
real-numbered values) are what decide in favour of a spe-
cific choice of words as opposed to some alternative. The 
black-box nature of NMT systems in particular and machine 
learning in general invites the objection that NMT is inscru-
table: we cannot explain how T might ultimately have been 
derived from S. Furthermore, NMT systems tend to be pow-
erless when confronted with words in S that they have not 
been trained to deal with. It is easy to construct sentences 
that have neither been written nor uttered in the history of 
the world. NMT systems that have been trained on billions 
of sentences in the bilingual corpora can nonetheless be 
stumped by these sentences, since they lack the power of 
generality (Scott 2018).15

5.4 � Foundation models

Given the amount of hype surrounding its emergence, 
ChatGPT must be covered in any survey of machine trans-
lation methods. ChatGPT is part of an emerging paradigm 
for building AI systems, based on a general class of mod-
els known as foundation models or large language mod-
els (Bommasani et al. 2021). A foundation model may be 
defined as a model that is typically trained on vast amounts 
of data (generally using self-supervision at scale) and can be 
adapted or fine-tuned to a wide range of downstream tasks. 
Examples of foundation models include BERT, CLIP, and 
GPT-3 (Brown et al. 2020; Devlin et al. 2019; Radford et al. 
2021). ChatGPT is effectively a proof of concept of founda-
tion models: it is a chatbot developed by OpenAI and pow-
ered by OpenAI’s GPT large language model.

On a technical level, foundation models are enabled by 
transfer learning and scale. By transfer learning is meant 
the ability to take knowledge derived when solving a prob-
lem and apply it to solve a different though related problem 
(Thrun 1998). In the context of deep learning-based AI sys-
tems, pretraining is the preferred approach to transfer learn-
ing: a model is trained on some surrogate task, before being 
adapted or fine-tuned to the downstream task of interest. 
By scale is meant the availability of ever-vaster amounts of 
training data, improvements in computer hardware, and the 
emergence of transformer model architecture to improve the 
context-based processing of unlabelled text across a broad 
range of tasks and train increasingly more expressive models 
(Bommasani et al. 2021). Google’s transformer model archi-
tecture, first developed by Vaswani et al. (2017), underpins 
most of the foundation models to date. Nonetheless and as 
things stand, we are still dealing with stochastic parrots or 
lumbering statistical machines for pattern-matching, rather 
than entities that are capable of natural language understand-
ing after the manner of human beings (Bender et al. 2021; 
Chomsky et al. 2023).

6 � FAHQMT

During 1958–1959, Yehoshua Bar-Hillel was charged by 
the U.S. Office of Naval Research to make a critical assess-
ment of machine translation activity in the United States and 
Great Britain. Where Fahqmt denotes fully automatic, high-
quality machine translation, Bar-Hillel ended up defending 
the hypothesis according to which Fahqmt is impossible in 
principle (Bar-Hillel 1960). This may be usefully contrasted 
with attempts to develop models to represent natural lan-
guage, store linguistic knowledge, apply the knowledge base 
to an input, and address complexity effects as the knowledge 

14  The special end-of-sentence symbol (EOS) is produced at the end 
of each sentence. For an example of an NMT system running on an 
attention-based encoder-decoder model, see Google on GitHub: 
https://​google.​github.​io/​seq2s​eq/ An alternative to the attention-based 
encoder-decoder model involves the use of convolutional neural net-
works or CNNs (Kalchbrenner and Blunsom 2013). However, virtu-
ally all NMT research has focused on the attention-based encoder-
decoder model.
15  The same can be said of SMT systems. Rules, which grant the 
power of generality, are characteristic only of RBMT systems.

https://google.github.io/seq2seq/
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base grows year after year (Scott 2003).16 According to Bar-
Hillel, the goal of Fahqmt or fully automatic translation of 
a quality equal to that of a competent human translator is 
unattainable, not only in the near future but also in princi-
ple. Bar-Hillel’s proof or demonstration of the truth of his 
Fahqmt hypothesis makes reference to the following trio of 
sentences:

Little John was looking for his toy box. Finally he 
found it. The box was in the pen.

The sentence-final ‘pen’ has at least two meanings: a play-
pen or enclosure where small children play (Meaning 1) and 
a writing instrument (Meaning 2). Given the relative sizes 
of play-pens (Meaning 1 of ‘pen’), toy boxes, and writing 
instruments (Meaning 2 of ‘pen’), only Meaning 1 is plau-
sible in this context. The full resolution of ambiguity and 
discovery of the true meaning of ‘pen’ relies on general 
knowledge about the world and a human-like understanding 
of states of affairs. However, it is impossible to build such 
general knowledge or human-like understanding into com-
puters. Therefore, neither fully automated nor human-quality 
translation ought to constitute realistic goals for machine 
translation researchers.

The contemporary practice of machine translation sup-
ports Bar-Hillel’s Fahqmt hypothesis. While the rules of 
RBMT grant a certain power of generality, they are strictly 
rules across various levels of linguistic representation 
that are designed to resolve ambiguity. They do not grant 
machine translation systems the power to acquire general 
knowledge about the world and a human-like understand-
ing of states of affairs. While SMT and NMT (usage-based) 
have the ability to learn from usage (i.e., they can learn from 
having been exposed to bilingual corpora), this is still insuf-
ficient to count as general knowledge about the world and a 
human-like understanding of states of affairs. The lack of this 
power of generality in statistics- and usage-based machine 
translation systems is most evident when these systems have 
to handle out-of-distribution source strings. Hybrid systems 
might appear to be more promising: the Logos model relies 
on both a rule-based approach (recall our discussion about 
its use of SAL representation in §5.1) and a usage-based 
approach (semantic associations and through the matching 
of patterns). It may be argued that SAL provides the requi-
site level of disambiguation relative to Bar-Hillel’s example. 
SAL has Meaning 1 and Meaning 2 stored and then can be 
used in a rule that constrains the meaning of ‘pen’ when 
there is a container (‘box’). The container cannot be inside 
the ‘pen’ (an instrument to write with). SAL allows for this 
disambiguation. Note however that SAL may fare less well 

when the container is a pen refill, which contains both actual 
ink and the gel that prevents this ink from flowing out from 
the refill through the top. Pen refills are containers that are 
normally located inside pens. Human beings understand that 
while most containers cannot be inside a pen, the pen refill is 
an example of a container that is contained within a pen. All 
things considered, even hybrid systems like the Logos model 
lack general knowledge about the world and a human-like 
understanding of states of affairs and flounder with modified 
versions of Bar-Hillel-style examples.

The appropriate use of natural languages presupposes 
both a general knowledge and an understanding of the world 
that RBMT, SMT, NMT, hybrid approaches, and founda-
tion models have been unable to deliver. An example from 
Bender and Koller (2020) will suffice to illustrate how it 
remains doubtful whether machine translation programs, 
however successful they might appear to be in the task of 
translation, will completely secure the trust of human users. 
They imagine an agent O (a hyperintelligent deep-sea octo-
pus) that intercepts communications between two human 
beings A and B speaking a natural language L. This agent O, 
in virtue of its inhabiting a world starkly different from that 
of the human beings A and B, does not have the appropriate 
sort of experiences to ground human utterances.17 None-
theless, O might be able to learn from the patterns in the 
utterances of A and B to the extent that it can pass off as a 
human being. However, we can still easily envisage situa-
tions in which O’s inability to ground the natural language 
in the world of human beings (as required by referential-
ism) or the internal representations or mental structures of 
human beings (as required by internalism) will show O up 
in at least certain circumstances. These circumstances will 
be circumstances in which it shall be revealed that O does 
not understand the natural language used by A and B. Given 
the complexity of the external world and our internal repre-
sentations of this world, it is doubtful whether any amount 
of textual data can fully encompass this complexity and the 
gaps will eventually reveal themselves.

Whatever may be said about agent O will equally apply 
to machine translation programs, whether they have been 

16  Bernard Scott is one of the pioneers of commercial machine trans-
lation whose attempt to develop models of this nature in the quest for 
Fahqmt must be fully acknowledged. I am grateful to an anonymous 
reviewer for directing me to Scott and his intellectual legacy.

17  O will therefore not possess understanding in the sense required 
by referentialism. The point may be extended to incorporate an inter-
nalist account of understanding: while machine translation programs 
may be good at the levels of words or even sentences, they tend to 
treat discourse as a mere conjunction of sentences. Insofar that 
machine translation programs will not have the appropriate internal 
representations of discourse, they will also not possess understanding 
in the sense required by internalism. It may be argued that if O has 
SAL knowledge, then it will be able to learn more about the words. 
However, SAL knowledge is still linguistic knowledge, and SAL-
based systems have no idea of the underlying reality that natural 
language describes. Human users of natural languages regularly rely 
on common sense (nonlinguistic knowledge) and it remains doubtful 
whether we can design AI systems with the level of common sense 
required for natural language understanding.
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developed in accordance with RBMT, SMT, NMT, hybrid, 
or foundation model approaches. As language modelling 
tasks use only linguistic form as training data, machine 
translation programs that have been trained on form alone 
have no a priori way to learn meaning and acquire the req-
uisite understanding of natural language. Insofar that they 
lack the requisite natural language understanding, we can 
predict that machine translation programs will fail to secure 
the trust of human users. With respect to ChatGPT, these 
gaps reveal themselves when it vacillates between coherent 
and nonsensical responses depending on the exact nature of 
the prompt being used, generates information that, though 
grammatically well-formed and correct-sounding, is incor-
rect, and produces harmful or biased content.

To recapitulate, here are the two conditions that must be 
satisfied relative to each task of translation (§1): 

C1:	The meaning of the source string is sufficiently well-
conveyed in the target string;

C2:	The target string is grammatically well-formed relative 
to the syntax of T.

However successful machine translation programs might 
be in the performance of discrete translation tasks, it by no 
means follows that they have fulfilled the responsibility of a 
translator. Gaps between the linguistic form of the training 
data and linguistic meaning (whether relative to the exter-
nal referents invoked by referentialists or the internal mental 
structures invoked by internalists) ensure that machine transla-
tion programs will lack the requisite level of natural language 
understanding and fail to secure the trust of human users. 
In any case, human intervention remains an indispensable 
component in machine translation, in the form of pre-editing 
and post-editing.18 In the pre-editing phase, the human pre-
editor will address ambiguities and rearrange the source text 
in accordance with a standard order in the target language, 
following instructions available to her in her own language. 
No prior knowledge of the target language is required from the 
human pre-editor. In the post-editing phase, the human post-
editor will remove errors from the machine translation output, 
ensuring that the meaning is correct. The post-editor will also 
attend where possible to stylistic issues. Here, knowledge of 
the target language is required from the post-editor.

The practices of pre- and post-editing and the central role 
that they occupy in machine translation suggest that fully 
automated and intervention-free translation will remain 
a pipe dream.19 Human intervention from pre- and post-
editors is still required to make the source text amenable 
to machine translation, correct mistakes in the source text, 

resolve ambiguity, simplify structures, eradicate mistakes 
in the machine translation output, attend to stylistic issues, 
and attain a high level of quality in translation.20 Human 
intervention is what ultimately secures trust in processes 
that rely on machine translation, since responsibility may be 
attributed to human beings who possess the requisite level 
of natural language understanding.

At the same time, even if Bar-Hillel’s Fahqmt hypoth-
esis is correct and Fahqmt is impossible in principle, it 
by no means follows that all forms of machine translation 
are impossible or useless. Machine translation could still 
be used to produce output of a sufficiently high quality to 
reduce the level of human post-editing effort required. We 
may have to start thinking of automation in terms of degrees 
of automation, as opposed to an all-or-nothing affair. There 
may be different levels of automation in machine transla-
tion. We may also have to concede that machine translation 
is likely to fare better at certain tasks as opposed to others: 
the task of translating technical language, for instance, is 
much more amenable to machine translation than the task 
of translating a piece of literature or poetry, provided that 
the technical terms are in the system terminologies (Bar-
reiro et al. 2011). Certain bottlenecks are bound to appear: 
knowledge about the real world, commonsensical knowl-
edge, cultural knowledge, and even knowledge about certain 
higher-level aspects of language (e.g. pragmatics, discourse 
analysis) may be difficult or even impossible to build into 
AI systems. These bottlenecks will mark the advantage that 
human translators continue to enjoy over their machine 
counterparts and the contours of future job descriptions for 
human pre- and post-editors and future research agendas 
for machine translation researchers. At the same time, if we 
wish to have some means of determining whether or to what 
extent machine translation programs have achieved the rel-
evant sort of understanding, then developing methods for 
tracking and studying the inner workings and dynamics of 
machine translation programs may be useful (Sundararajan 
et al. 2017; Tenney et al. 2019).21

18  The concepts of pre-editing and post-editing in MT may be traced 
to Erwin Reifler (1952), a professor of Chinese Languages and Lit-
erature.

19  At the same time, there is no inconsistency in maintaining that 
machine translation can still be improved so that less effort is required 
in the editing task.
20  Equally, human intervention may be required in the curation of 
corpora on which AI systems are trained. The corpora may contain 
a copious amount of noise, unintelligent or meaningless text, and text 
from ethically questionable sources (e.g. propaganda generators). I am 
grateful to an anonymous reviewer for having pointed this out to me.

21  This entails that we will need to reconsider how we make the 
accuracy-interpretability trade-off in machine translation. Black-box 
models are more accurate but their inner workings and dynamics are 
more difficult to understand. By contrast, white-box models are less 
accurate but their inner workings and dynamics are easier to explain 
and interpret. The current trend is in favour of black-box models (i.e., 
neural network-based approaches to machine translation).
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7 � Conclusion

In conclusion, we have carefully distinguished between the 
task of translation (§1) and the responsibility of the transla-
tor (§3). In §1, we identified the two necessary and suffi-
cient conditions (C1–C2) that must be satisfied in order for 
this task of translation to be successfully accomplished. We 
characterized natural languages in terms of their complexity, 
ambiguity, and diversity and distinguished between mono-
lingual NLP tasks and machine translation tasks involving 
language pairs. In §2, we introduced the two horns (H1–H2) 
of the computational dilemma, argued that human transla-
tors do not embrace H1 indefinitely, and conceded that it 
remains unclear how human translators are nonetheless 
able to overcome the computational dilemma despite their 
memory constraints. In §3, we argued that the responsibility 
of the translator involves more than the merely successful 
performance of the task of translation: it equally involves 
a requisite level of natural language understanding. In §4, 
we distinguished between the metaphysics of understanding 
and the epistemology of understanding, related the former 
(concerned with what might hold in principle) to the latter 
(concerned with what might hold in practice) and argued 
that our gold standard for a metaphysical account of under-
standing remains either internalism, referentialism, some 
combination of both, or some alternative theory of meaning 
that is neither internalist, referentialist, nor pragmatist. In 
§5, we provided a survey of machine translation methods, 
including RBMT (§5.1), SMT (§5.2), NMT (§5.3), and 
foundation models (§5.4). In §6, we introduced Bar-Hillel’s 
hypothesis about the impossibility of Fahqmt, relied on an 
example from Bender and Koller (2020), and defended the 
claim that none of the methods of machine translation ulti-
mately succeed in overturning this hypothesis. Gaps between 
the linguistic form of training data and linguistic meaning 
remain, human-like understanding remains out of reach for 
state-of-the-art machine translation systems, Furthermore, 
human intervention (pre- and post-editing) is still part and 
parcel of the machine translation process, although it may 
equally be conceded that improvements in machine transla-
tion could make these tasks easier than they currently are. 
Once we drop the ideal of full automation, start thinking 
in terms of degrees of automation, and carefully consider 
how we might test for, track, and study the degree to which 
machine translation programs understand natural language 
(as opposed to merely processing it), we may end up having 
a far more fruitful discussion about the prospects and limita-
tions of machine translation.

Curmudgeon Corner  Curmudgeon Corner is a short opinionated col-
umn on trends in technology, arts, science and society, commenting on 
issues of concern to the research community and wider society. Whilst 
the drive for super-human intelligence promotes potential benefits to 
wider society, it also raises deep concerns of existential risk, thereby 

highlighting the need for an ongoing conversation between technology 
and society. At the core of Curmudgeon concern is the question: What 
is it to be human in the age of the AI machine? -Editor.
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